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Abstract

A general analytical solution for an isotropic trimaterial interacted with a point heat source is provided in this paper.
Based on the method of analytical continuation in conjunction with the alternating technique, the solutions to heat
conduction and thermoelasticity problems for three dissimilar media are first derived. A rapidly convergent series
solution for both the temperature and stress functions, which is expressed in terms of an explicit general term of the
complex potential of the corresponding homogeneous problem, is obtained in an elegant form. As a numerical illus-
tration, the distributions of thermal stresses along the interface are presented for various material combinations and for
different positions of the applied heat source and heat sink.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Considerable research activities in the area of stress analysis of a layered medium have been carried out
in recent years because of the increasing use of composite materials in many engineering applications. Due
to the inherent heterogeneous nature of the composites, the analysis of such materials is much more in-
volved than that of homogeneous counterparts. For multilayered composites, the problem becomes more
complicated since the solutions are forced to satisfy both the boundary and interface continuity conditions.
Consequently, the conventional procedure of stress analysis of multilayered media results in having to solve
a system of simultaneous equations for a large number of unknown constants. The complexity of such a
procedure can be found in the work of Iyengar and Alwar (1964) as well as Chen (1971) who analyzed the
semi-infinite medium composed of isotropic layers. As an alternative efficient approach to the analysis of
multilayered media, various solution procedures have been developed. Bufler (1971) used the transfer
matrix approach to convert the boundary value problem to an equivalent initial value problem based on the
mixed formulation of elasticity proposed by Vlasov and Leontev (1966). This transfer matrix is expressed in
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terms of the infinite series expansion allowing solutions with various orders of approximation to be ob-
tained. Based on the flexibility matrix method, Small and Booker (1984) performed the stress analysis of a
layered medium resting on a rigid foundation. This method has been found to have an advantage of sig-
nificantly reducing the number of simultaneous equations. Lin and Keer (1989) also used the flexibility
matrix method together with the boundary integral formulation to deal with a vertical crack in a layered
medium. Based on the Fourier transform technique in conjunction with the stiffness matrix approach, Choi
and Thangjitham (1991a,b) obtained the solutions of multilayered anisotropic elastic media. Choi and
Earmme (2002a,b) employed the alternating technique to obtain the solution of singularity problems in an
isotropic and anisotropic trimaterial. All the aforementioned studies are, however, limited to an isothermal
condition. When the thermal effect is considered, the problem becomes even more complicated. Padovan
(1975, 1976) studied the thermoelastic fields of generally laminated slabs and cylinders subjected to spatially
periodic thermal loadings by using the method of complex series expansion. Based on the method of
displacement potential, Taucher and Akoz (1975) derived the solutions of thermoelasticity for a simply-
supported laminated slab. Tanigawa et al. (1989) performed the transient thermal stress analysis of a
laminated composite beam. Choi and Thangjitham (1991a,b) extended the flexibility/stiffness matrix
method to the thermoelasticity problem of a multilayered anisotropic medium. To the authors” knowledge,
a general analytical solution for the problem of multilayered elastic media interacted with a point heat
source has not been found in the open literature.

In this paper, we consider the problem of an isotropic trimaterial interacted with a point heat source.
Trimaterial defined here represents an infinite body composed of three dissimilar materials bonded along
two parallel interfaces. The proposed method is based on the technique of analytical continuation that is
alternatively applied across the two parallel interfaces in order to derive the trimaterial solution in a series
form from the corresponding homogeneous solution. A variety of problems such as bimaterial problem, a
thin layer bonded to a half-plane, a finite strip of thin film, etc., can be treated as special cases of the present
study. The plan of this paper is as follows. The general formulation for plane isotropic thermoelasticity is
provided in Section 2. The general forms of the complex potentials of the temperature and stress functions
are provided in Sections 3 and 4, respectively. Some special examples are solved in Section 5. Finally,
Section 6 concludes the article.

2. Problem formulation

Consider a trimaterial occupying regions S, :xp = h, S, : h = x, =0, and S, : x, <0, respectively, are
perfectly bonded along two parallel interfaces L : x, = 0 and L* : x, = h as shown in Fig. 1. Consider a point
heat source of intensity Q, located at the point (x,,x,2) and a point heat sink of intensity —Q, located at the
point (xzj,x;») that may cause a thermal stress distribution as a result of the different thermoelastic
properties of the three phases. For a two-dimensional heat conduction problem, the resultant heat flow O
and the temperature T can be expressed in terms of a single complex potential g'(z) as

0= / (¢ dy — g dv) = —kIm(g/(z)] (1)

T = Reld(2)] (2)

where Re and Im denote the real part and imaginary part of the bracketed expression, respectively and
primes denote differentiation with respect to z(z = x; +1ix,). The quantities g¢,,,q,, in Eq. (1) are the
components of heat flux in the x; and x, direction, respectively, £ stands for the heat conductivity. Once the
heat conduction problem is solved, the temperature function g'(z) is determined. For a two-dimensional
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Fig. 1. A pair of point heat source and sink in a trimaterial.

theory of thermoelasticity, the components of the displacements and stresses can be expressed in terms of
two stress functions @(z), 2(z) and a temperature function g'(z) as

2Gai;1(u1 +iuy) = kP(z) — Q(z) — (z = 2)¥'(2) + 2GPg'(2) )

op — i1, = O(z) + Q(z) + (z — 2)P'(2) 4)
where G is the shear modulus, k = 3 — 4v, f = (1 + v)a for plane strain and (3 —v)/(1 4+ v), f = « for plane
stress with v being the Poisson’s ratio and « the thermal expansion coeflicient. Here a superimposed bar
represents the complex conjugate.

For the problem associated with an isotropic elastic bimaterial, the stresses are found to depend on only
two non-dimensional Dundurs parameters (Dundurs, 1969)

“ _Ga(Kb+1)—Gb(Ka+1) Ga(Kb—l)—Gb(Ka—l)
P Galicy + 1) + Gk + 1) G.(k + 1) + Gy(ica + 1)

Ba = (5)

where a and b refer to the two materials composing the bimaterial. Another pairs associated with the above
two parameters are defined as

Otap + ﬁab %ap — ﬁab
Ap=20"Far - yp, 2t~ Pa 6
’ 1 - :Bab ’ 1+ ﬁab ( )

which will be used in our subsequent derivations for trimaterial problems.

3. Temperature function
3.1. A singularity embedded in S,

To obtain the thermal potential 6(z) = g'(z) for the problem with a singularity in a trimaterial with two
parallel interfaces as shown in Fig. 1, the alternating technique is applied.
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Step 1: Analytical continuation across the interface L

First, we regard regions S, and S, composed of the same material b and region S, of material c. If 0y(z)
signifies a potential for a singularity in an infinite homogeneous plane of material b, 6.(z) analytical in S,
and 0;(z) analytical in S, U S, are introduced to satisfy the continuity conditions across L as

o) = { goo((zz))+ e c :g o (7)

The continuity of resultant heat flow and temperature across the interface L requires

Oc0(x1) + Oco(x1) = 01 (x1) + 01 (x1) + Oo(x1) + Oo(x1) (8)
kelBco(x1) = Beo(x1)] = kp{[00(x1) + 01 (x1)] = [Oo(x1) + 61 (x1)]}

By the standard analytic continuation arguments it follows that
0.0(z) = 01(z) + 0p(z) z€S,US, )
00(z) = 01(2) + 0p(z) z€S.
kCH—CO(z) = kbe—o(z) — k;,@l(z) zeS,US, (10)
kCOCO(z) = k},O()(Z) — k;,O_l(z) zeS,

With Egs. (9) and (10) one obtains
01(2) = CbQ_O(z) zeS,US, (11)
660(2) = Ucbgo(Z) z€S,

where

Uy = 2k (ke + k)~ (12)

cb - (kb k )(kc + kb)71

Since this result is based on the assumption that region S, is made up of material b, it cannot satisfy the
continuity conditions at the interface L* which lies between material @ and 5.

Step 2: Analytical continuation across the interface L*

Nest, we assume regions S, and S. be made up of the same material b and region S, of material a.
Additional terms 6 (z) analytical in S, U S, and 6,,(z) analytical in S, are introduced to satisfy the con-
tinuity conditions across the interface L* that

{ 001 (x}) + 0y (x]) = 0 (x}) + 07 (x]) + Oo(x7) + 0 (x7) + 03, (x7) + 03, (x7) (13)
ka0 (1) = 05 ()] = ko {[0(x7) + 03 (x7) + 03, ()] — [0(x7) + 07 (x7) + 03, ()]}
Here, “** denotes the field in x] x} system. By analytical continuation method one can obtain

0,(2") = Un[01(z") + 0y(z")] 2" €S,

{ezmz) =V [Tz) + )] = es,Us, (9

where U,, and V;, are defined as in Eq. (12).
With a coordinate translation z* = z — ik (see Fig. 1), it is easy to show that the thermal potential 0(z) in
the x;x, coordinate system is related to the function 0°(z*) in the xjx} coordinate system by

0°(z") = 0(z),  0°(z") = 0(z — 2ih) (15)
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Substitution of Eq. (15) to Eq. (14) yields

{ 0,1(z) = Upl61(z) + 6o(2)] zeS,

051 (2) = Vi [01(z — 2ih) + Oo(z — 2ih)] z € S,US. (16)

Since this result is based on the assumption that region S, is made up of material b, it cannot satisfy the
continuity conditions at the interface L.

Step 3: Analytical continuation across the interface L
We again assume regions S, and S, be made up of the same material 4 and region S. of material c.
Additional terms 0,(z) analytical in S, U S, and 0, (z) analytical in S, are introduced to satisfy the continuity

conditions across the interface L. By a similar way to the previous approach, one can find
05(2) = V.0 (z ze S, Us
2( ) b bl( ) b (17)
01-1(2) = Ucbgbl (Z) z e Sc

Obviously, this result cannot satisfy the continuity conditions at the interface L*.

Step 4: Repetitions of steps 2 and 3

The method of analytical continuation is repeatedly performed across the two interfaces to achieve the
additional terms 0,,(z), 05,(2z), 0..(z), 0,.1(z) for n =2,3,... Consequently, one can find the complete
solution of 6(z) as

Z;’i] Oun(2) z€S,
0(z) =% 00(2) + >0, 0,(2) + 37, Opu(z) z €S, (18)
Oco(2) + 22021 Oen(2) z€S,
Since 0,,(z), 0y,(z) and 6,,(z) can be expressed in term of 6y(z), Eq. (18) becomes
Uai00(2) + Uap > ey 04(2) z€e S,
0(z) = { 00(2) + 301 0u(2) + Vislo(z — 2ih) + Vi 30, 0,z — 2ih)  z € S, (19)

UC;,HO(Z) + U V;},H_o(z — 21h) + UV Z;il H_H(Z — 21h) z€S,

where the recurrence formulae for 0,(z) is

VipOo(2) n=0
0,11(2) = $ ViV [04(z + 2ih) + Op(z + 2ih)] n=1 (20)
Veo Va0 (z + 2ih) n=234...

For a point heat source of intensity Oy located in the point z = z; and a point heat sink of the same intensity
located in the point z = z; in the infinite homogeneous plate, the solution is

0o(z) = —% log <Z _ZS> (21)

zZ — Zp

3.2. A singularity embedded in S.

Using the same procedure as Section 3.1, the solution of the other case in which the singularity is located
in region S, is
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Ui > ey 04(2) z€e S,
0(z) =< 3220, 0,(2) + Vip D00, 0,(z — 2ih) z€S, (22)
00(2) + VieOo(2) + U Vin > ooy 0,(z — 2ih)  z € S,

where the recurrence formulae for 0,(z) is

Uye00(z) n=20
Onr1(z) = . (23)
VisVap0,(z + 2ih) n=1,2,3,...

4. Stress function
4.1. A coordinate translation

Suppose that the region S, : x, = & and S, < /& occupied by material a and b, respectively, are perfectly
bonded along the interface x, = 4. With a coordinate translation z* =z — i (see Fig. 1 with material
¢ = material b), the potentials @(z) and Q(z) in the x;x, coordinate system are related to the potentials
" (z*) and Q"(z*) in the x] x} coordinate system by

D(2) = ¥ (), Q) = Q) + 280" (2) (24)

With @*(z*) = ®&(z — 2ih), it is easy to show

Q' (z") = Qz — 2ih) + 2ih® (z — 2ih) (25)

4.2. A singularity embedded in S,

We first regard regions S, and S, composed of the same material b and region S, of material c. If @,(z)
and Q,(z) signify the stress functions for a singularity in an infinite homogeneous plane of material b,
®,,(z) and Q,,(z) analytical in S, US,, @.(z) and Q. (z) analytical in S, are introduced to satisfy the
continuity conditions across L as

D(z) = Ppo(2) + Pp(z) z€S,US,
(26a)
D(z) = De.(2) zeS,
Q(z) = Qu(z) + Qulz) z€S,US,
Q(Z) = QCC(Z) z E SE
The continuity of traction and displacement across L yields
(pcc(xl) +Q_cc(X1) = <15;,a(x1) + (15;,;,(x1) +Q_ba(x1) +-Q_bh(xl) (273)

ZLGC [ B (1) — D)) + () = %Gb (5 Bpa (1) + KBy (1) — Po(1) — Dyn (1]

+ B[00 (x1) + Opa(x1) + Ope(x1)] (27b)
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By the standard analytical continuation arguments it follows that
D(2) = Qpa(2) + Ppi(z) z €S,
Quin(2) + Ppa(z) = Que(z) z€S,US,

—Q..(2) _ K3 ®pa(z) — Qi (2)
2G. 2G,,

—+ ,B,ﬂha(z) z e Sa U S/,

K(,(DCC(Z) . Kbeh(Z) — Q_ba(z)
2G, Bl = 2G,
From Egs. (28a) and (28b), one can find

~B0ha(2) + (35 = 5 ) D)

+ Byl0be(2) + 00(2)] z €S,

<Pba(z) = - I zeS, US,
2G, T 2G.
Ope(z) + Oy(z O + W) (2
o B0 £ 0 B0 S ni)
2G(.+2_Gb

Bl01c(2) + 02)] — BDec@) + (35 = 5 ) Pul2)

Qpi(2) = - : zeS,uUus,
ZG(.+E

—By0sa(2) + "2”5” Qui(2)

Q.(z) = - zeS.
O a Tk
where
GbQOﬂb Z—2Z
()] 1
bh( ) 41'[](;,(1 — V;,) °8 Z— Zy
Gy Q0P z—z\ Z-Z4 z—%
Q 1 —
m(z) = 4tk (1 — vp) °g z—z —‘_zfzY z—z

o0

Opa(z) = D 0,(2)

n=1

Ope(2) = V0o (z — 2ih) Z z — 2ih)
n=1

0.0(2) = Uaplo(2) + U V0o (z — 2ih) + Z z — 2ih)

6239

(28a)

(28b)

(29a)

(29b)

(30)

(31)

(34)

Since this result is based on the assumption that region S, is made up of material b, it cannot satisfy the

continuity condition across L*.

Next, we assume regions S, and S, be made up of the same material b and region S, of material a.
Additional terms @y(z) and Q(z) analytical in S, U S,, ®,,(z) and Q,,(z) analytical in S, are introduced to

satisfy the continuity conditions across L* as

@, () + Q, () = P, (x]) + Qy () + By (67) + @y (x7) + B (x7) + ()

(35a)
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1

TN K@, (x]) + Ko @y, (x]) + 1D (x]) — Q5 (x])

K@, (51) = D (x])| + B,03,() = 2%1,[
= 95, (x}) = QD] + B l05(x1) + 03, (1) + O3 ()

where
eaa( ) - ab 00 + Uab Z 6}1

By the standard analytical continuation arguments it follows that
D,,(2") = B}, () + By, (2") + () 2" €S,

Q) = By(2) + Q,(2) + Q,(z") €S US,

Ka¢aa(z ) +ﬂgeza(2*) _ Kbq)ha(z ) + Kbq)bh(z ) - QO(Z ) _’_ﬁbws(z*) + eza(z*)] 7 es,
2G, 2G,
Q) _ @) = 9,() — (=) © ey

- 2Ga - 2Gb + ﬁbebc(z ) EARS Sb U Sc

From Egs. (37a) and (37b), one can find

(&-2) @) + T )] - 2,0
Py(z") = T S eSS
Ga ' Gp
Kp+1 ¢* _1_@* 7 +2 0* o+ +0* z* _2 a@* z*
P (") = 6 [P (27) + Dy (27)] fl:[rﬁ )5 0l = 20l 7 es,
G, Gp

(g_i_g_z)@(z*)+¢_;(z*)]+zﬁb[ig(z*)+?;(z*)} 28,0,,(2")

QS(Z*) = Ka L Z* E Sb USC
G, Gy
(e e - 280
Q(z") = T e s,
G, Gy,

With the aid of Eqgs. (15), (24) and (25), Egs. (38a) and (38b) become

(G% - _[) (@b (z — 2ih) + 2], (z — 2ih)] — 2,00 (2)
(DO(Z) = 14k

(é - ) [Qun(z — 2ih) + 2ih @], (z — 2ih)]

+ 14k
G, Gy

zeS,US,

) z z z zZ)| — z
Bun(z) = [Pba(2) + P )Hjﬁiwf()wba( )| = 2Bi0a4(2) ses,

(37a)

(37b)

(38a)

(38b)

(39a)
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5 5) (Bpa (2 — 2ih) + By (z — 2i1)] + 2B, [0 (z — 2ih) + Opu(z — 2ih)] — 2B, 0ua(z — 2ih)

G, Gy

ZGS},USC

90, (2) — 2ihd), (2) + Qua(z) — 2ih®,, ()] — 28,00 (z — 2ih
Qua(2) = 2ih® (2) + -2 [2(2) ba(2) + Qi (2) 3 (2)] = 28505 ( )

aa 1 Kb
G, + Gy

zeS,
(39b)

Since this result is based on the assumption that region S, is made up of material b, it cannot satisfy the
continuity conditions across L. The procedures are similar to the previous approach and therefore the
details are suppressed here. The final results are as follows

Dua(2) + (1 + Awp) Y00 Poulz) zeS,
D(2) = { Bpo(z) + Pii(2) + Po(2) + 2,0 [@u(2) + 45/ 20 (2)] 2 €S, (40a)
Dee(z) + (1 + Aep)Po(z) + (1 + A;bl) Zrolil §n-%—l(Z) ZES,

Qaa(z) + (1 + Hab) Zsil Qn(z) + 2ih(/1ab - Hab) Zrolozl Q;(Z) AS Sa

Qz) = § a(z) + Qi(2) + Qo(2) + 300, [Qu(2) + 11, @11 (2)] zZ€S (40b)
Qee(2) + (1 + M) Q0(2) + (1 + 15 o, Dy (2) zES,
where the recurrence formulae for ¢,(z) and Q,(z) are
I1.,Q0(z forn=20
N (41a)
I (A0 @y (z + 2ih) — 2ihI1 Q2 (z + 2ih) — 4h° 11, P, (z + 2ih)] forn=1,2,3,...
APy forn=0
Qu1(2) = () . . . i (41b)
A p[Q2,(z + 21h) — 2ih®/ (z + 2ih)] forn=1,2,3,...
For the special case that material « is made up of material b, Eq. (40) reduces to
BV (2) + ( 56, — 2 ) Qon(2)
icb(_iGbl ZGL) + (Dbh(Z> z€ Sy
&(z) = 26~ 26 ‘ (42a)
(By = B.Ues)00(z) + 552 @i (2)
Ke 1 z¢e S"
2G, + 2G,
(By = BUa)o(2) + (5 = 35 ) Bun(2)
- +L + Qbh(z) z€S,
Qz) = 2. " %, (42b)
=By Ves00(2) + 55, Qun(2)
K, 1 z e SC
Lt
2Gy 2G,

which is in agreement with the exact solution of the bimaterial one (Chao and Shen, 1993).
4.3. A singularity embedded in S,

By the same arguments as Section 4.2, the solution of the other case in which the singularity is located in
region S, is
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¢aa(z)+(1+Aah)Zflol¢() z€S,
D(z) = § Dpa(2) + Do(2) + 200, [@u(2) + A Qi (2)] ZES,
Pee(2) + Pon(2) + (1 + Aep) Po(2) + (1 + 45) Y02 Qua(2) z €S

Qua(2) + (1 + ) an 1 2, (2) + 2ih(Aap — Hap) Z;O:I (D;(z) z€ S,
Q(2) = § Qual(2) + Q(2) + 3502, [2u(2) + 11, D41 (2)] ZES,

Qee(2) + Qen(2) + (1 + ) Q0(2) + (1 + H;bl) ZZC:I 5,,“(2) z€ S,
where the recurrence formulae for @,(z) and Q,(z) are
Bpr(2) ,,Q(z) forn=0
n zZ) =
- [ Ay @, (z + 2ih) — 20hIT Q. (z + 2ih) — 421, P (z + 2ih)] for n=1,2,3,...
O Ay ®o(z) forn=0
U Hap M| Q0 (2 + 2h) — 2ih® (2 + 2ih)] for n=1,2,3,...

and

( lerG}:'.(‘ ) D (2) — Bp0ba(z) + B.00(2)

¢ba (Z ) = Kp 1
2Gy, 2G.
(55 = 557 ) 2en(2) + By (2) = Bubee(2)
Dee(z) = o 1
2G. ' 2G,

( 12+G}j(‘ )Qt’h (2) + ByOre(z) — B0cc(2)

Qba (Z) = Ke 1
2G, 2Gy
o~ B }_<_> il (2) + B.To(c)
2G, ZG(.

(L - é) [Q_,m(z — 2ih) + 2ih @), (z — 2ih)| — 28,00 (2)

%0() = : 1. m
Ga = Gy
Kthl Dy (2) + 2B40pa(2) — 2B,0ua(2)

®,,(z) =

Ka o 1
Ga+Gb

(8 ) Bz — 20h) + 26,000z — 2ih) — 28,0u0(z — 2ih)
Qo(z) = 21hPy(z) +

Gp
&ta
5t (2) — 2ih®, (2)] — 2,04 (z — 2ih
Qaa(z) =21h(15' (Z)—|— Gs [ b () ba( )] ﬂb b( )
aa GL+g_b
a b

o GCQO,BC zZ— Z
Pa(2) = 4rk.(1 —v.) log <Z - Zk>

(43a)

(43b)

(44a)

(44b)

(45a)

(45b)

(46a)

(46b)
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Qu(z) =~ G Qb )[1og<ZZS>+ZZ_‘“—ZZ_" (48)

" ank.(1 - v, z—z) z-z z-—z
) = i 0,2 (49)
Ope(2) = Vip ilﬂ_”(z — 2ih) (50)
%@m%ﬂu&minwam (s1)
0ua(2) = U 3 0,(2) (52)

For the special case that material « is made up of material b, Eq. (43) reduces to

12+G]jc D (z) + (B, — UsePy)0o(2) g
Kp 1 b
26, T 26,
*@) = o N 53
@ (55 = 25 ) @arl2) = BFico(2) (33a)
K, 1 + djch z € Sc
C + 1
26. T 26,
5 Qu(2) — B.Vre00(2)
= - z€S,
LR
26. T 26,
@) = o . 53b
) (ZKG - z%,)‘pch(z) + (B, — UscBy)00(z) (53b)
Kp 1 + 'Qch(z) z€S.
D + 1
26, T 26,

which is in accordance with the exact solution of the bimaterial one (Chao and Shen, 1993).

5. Results and discussion

The thermal potentials as indicated in Egs. (19) and (22) are expressed in terms of a homogeneous
solution 6,(z) through the recurrence formulae (20) and (23), respectively. The rate of the convergence
depends on the non-dimensional bimaterial constants U,, and V,, (or U, and V}.). The present series
solution converges to the true solution since those bimaterial constants are always less than one. The stress
functions as indicated in Eqs. (40) and (43) are expressed in terms of &@,(z) and Q,(z) (n = 0,1,2,...), which
may be calculated from a homogeneous solution @(z) and Qy(z) by the recurrence formulae equations (41)
and (44). The rate of convergence depends on the ratios |®,.(z)|/|®.(z)| and |2,,1(2)|/]2,(z)|, which in
turn depend on the non-dimensional bimaterial constants A,, and I1,, (or A, and II.). For most com-
binations of materials, A and IT are less than 1 and 0.5, respectively, which guarantees rapid convergence.
Consequently, the convergence rate becomes more rapid as the differences of the elastic constants of the
neighboring materials get smaller. Even though materials a and/or ¢ are rigid or non-existent, the solution
remains valid. For another limiting case in which two adjacent materials are identical, the series solution for
a trimaterial reduces to the bimaterial one. In order to demonstrate the use of the present approach, the
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interfacial stresses for a trimaterial and for a film/substrate system are discussed in detail and shown in
graphic form. Note that all the calculated results shown in Figs. 2-7 are determined by summing up the first
four terms of Eq. (40), since they are checked to achieve a good accuracy with an error less than 0.01% as
compared to the first five terms of Eq. (40) for the current problem.

3 —
7] Xs2 =h/2
2 ] / Xs2 =h/3
1 —
-C.D
Q —
c,
O 0
2]
s Go/Gp=G/Gp=3/4
4| kalkp=kg/kp=4/1
Ba/Bp=Bc/Bp=4/3
7 vg=Vve=0.32
2 vp=0.29
Xg1 =0
-3 T I T I T I T I T I T I T I T I T I T I

Fig. 2. Interfacial shear stress distribution induced by a point heat source.

2 —
1 p—
o Ga/ Gp=Gg/Gp= 34
Ka/ Kp = kg / kp= 4/1
< 7] Ba/Bo=Bc/Bp=413
éé 1 Va=Ve =032
& - Vp =029
= X1 =0
< 2
° b Xsp =h/6
_3 —]
i Xs2=h/3
4 \xsz =h/2
-5 T T T T T T T 7T T 171

Fig. 3. Interfacial normal stress distribution induced by a point heat source.
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Vp=0.29
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Fig. 4. Interfacial shear stress distribution induced by a pair of point heat source and sink.
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Fig. 5. Interfacial normal stress distribution induced by a pair of point heat source and sink.

5.1. Interfacial stresses for a trimaterial

As our first example, we consider a trimaterial interacted with a point heat source embedded in material
b. The shear stress and normal stress distributions along the interface between material a and material b are
presented in Figs. 2 and 3, respectively. Both the maximum shear stress and the maximum compressive
normal stress decrease with increasing of the distance between the singularity point and the interface. Note
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Fig. 6. Interfacial shear stress distribution for a film/substrate structure.
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Fig. 7. Interfacial normal stress distribution for a film/substrate structure.

that the normal interfacial stress would not be bounded as |x;| goes to infinity due to the presence of the
singular term In z induced by a point heat source. Nevertheless, the interfacial stress remains finite at infinity
if one considers the case with a pair of point heat source and sink applied in the material medium as
indicated in Figs 4 and 5. Moreover, it is evident that the maximum compressive (or tensile) stress occurs
around the location of the heat source (or sink).
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5.2. Interfacial stresses for a filmlsubstrate

As a second example we consider a film/substrate structure interacted with a pair of point heat source
and sink. When material ¢ (or a) is non-existent, the solution of a film/substrate structure can be obtained
by putting U, =2, V., = 1 in Eq. (19) and A, = 1., = —1 in Egs. (40). The distribution of the interfacial
stresses between material ¢ and material 4 is shown in Figs. 6 and 7. It is seen that the trend of the
interfacial stresses of the present case is nearly the same as that of the trimaterial one, but the magnitude of
interfacial stresses for a film/substrate structure is smaller than that of a trimaterial. This is simply because
that the interfacial stresses can be further intensified (or diminished) by the adjacent material having a
higher (or lower) stiffness.

6. Conclusion

Thermal stresses for an isotropic trimaterial induced by a point heat source is analyzed in this paper.
Within the framework of the procedure of analytical continuation and the method of successive approx-
imations, the solution associated with the heterogeneous problem is sought as transformation on the
solution to the corresponding homogeneous problem. Using the present approach, the solution related to
the problem consisting of any number of layered medium can also be obtained as the corresponding
homogeneous solution is solved. The convergence rate of the series solution depends on the material
combinations in such a way that the convergence rate becomes more rapid if the differences of elastic
constants of adjacent materials get smaller. The trimaterial solution presented here can be applied to a
variety of problems, e.g. a bimaterial, a film/substrate structure, and a finite strip of thin film, etc.
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