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Abstract

A general analytical solution for an isotropic trimaterial interacted with a point heat source is provided in this paper.

Based on the method of analytical continuation in conjunction with the alternating technique, the solutions to heat

conduction and thermoelasticity problems for three dissimilar media are first derived. A rapidly convergent series

solution for both the temperature and stress functions, which is expressed in terms of an explicit general term of the

complex potential of the corresponding homogeneous problem, is obtained in an elegant form. As a numerical illus-

tration, the distributions of thermal stresses along the interface are presented for various material combinations and for

different positions of the applied heat source and heat sink.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Considerable research activities in the area of stress analysis of a layered medium have been carried out

in recent years because of the increasing use of composite materials in many engineering applications. Due

to the inherent heterogeneous nature of the composites, the analysis of such materials is much more in-

volved than that of homogeneous counterparts. For multilayered composites, the problem becomes more

complicated since the solutions are forced to satisfy both the boundary and interface continuity conditions.
Consequently, the conventional procedure of stress analysis of multilayered media results in having to solve

a system of simultaneous equations for a large number of unknown constants. The complexity of such a

procedure can be found in the work of Iyengar and Alwar (1964) as well as Chen (1971) who analyzed the

semi-infinite medium composed of isotropic layers. As an alternative efficient approach to the analysis of

multilayered media, various solution procedures have been developed. Bufler (1971) used the transfer

matrix approach to convert the boundary value problem to an equivalent initial value problem based on the

mixed formulation of elasticity proposed by Vlasov and Leontev (1966). This transfer matrix is expressed in
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terms of the infinite series expansion allowing solutions with various orders of approximation to be ob-

tained. Based on the flexibility matrix method, Small and Booker (1984) performed the stress analysis of a

layered medium resting on a rigid foundation. This method has been found to have an advantage of sig-

nificantly reducing the number of simultaneous equations. Lin and Keer (1989) also used the flexibility
matrix method together with the boundary integral formulation to deal with a vertical crack in a layered

medium. Based on the Fourier transform technique in conjunction with the stiffness matrix approach, Choi

and Thangjitham (1991a,b) obtained the solutions of multilayered anisotropic elastic media. Choi and

Earmme (2002a,b) employed the alternating technique to obtain the solution of singularity problems in an

isotropic and anisotropic trimaterial. All the aforementioned studies are, however, limited to an isothermal

condition. When the thermal effect is considered, the problem becomes even more complicated. Padovan

(1975, 1976) studied the thermoelastic fields of generally laminated slabs and cylinders subjected to spatially

periodic thermal loadings by using the method of complex series expansion. Based on the method of
displacement potential, Taucher and Ak€oz (1975) derived the solutions of thermoelasticity for a simply-

supported laminated slab. Tanigawa et al. (1989) performed the transient thermal stress analysis of a

laminated composite beam. Choi and Thangjitham (1991a,b) extended the flexibility/stiffness matrix

method to the thermoelasticity problem of a multilayered anisotropic medium. To the authors’ knowledge,

a general analytical solution for the problem of multilayered elastic media interacted with a point heat

source has not been found in the open literature.

In this paper, we consider the problem of an isotropic trimaterial interacted with a point heat source.

Trimaterial defined here represents an infinite body composed of three dissimilar materials bonded along
two parallel interfaces. The proposed method is based on the technique of analytical continuation that is

alternatively applied across the two parallel interfaces in order to derive the trimaterial solution in a series

form from the corresponding homogeneous solution. A variety of problems such as bimaterial problem, a

thin layer bonded to a half-plane, a finite strip of thin film, etc., can be treated as special cases of the present

study. The plan of this paper is as follows. The general formulation for plane isotropic thermoelasticity is

provided in Section 2. The general forms of the complex potentials of the temperature and stress functions

are provided in Sections 3 and 4, respectively. Some special examples are solved in Section 5. Finally,

Section 6 concludes the article.
2. Problem formulation

Consider a trimaterial occupying regions Sa : x2 P h, Sb : hP x2 P 0, and Sc : x2 6 0, respectively, are

perfectly bonded along two parallel interfaces L : x2 ¼ 0 and L� : x2 ¼ h as shown in Fig. 1. Consider a point

heat source of intensity Q0 located at the point ðxs1; xs2Þ and a point heat sink of intensity �Q0 located at the
point ðxk1; xk2Þ that may cause a thermal stress distribution as a result of the different thermoelastic

properties of the three phases. For a two-dimensional heat conduction problem, the resultant heat flow Q
and the temperature T can be expressed in terms of a single complex potential g0ðzÞ as
Q ¼
Z

ðqx1 dy � qx2 dxÞ ¼ �k Im½g0ðzÞ� ð1Þ
T ¼ Re½g0ðzÞ� ð2Þ
where Re and Im denote the real part and imaginary part of the bracketed expression, respectively and

primes denote differentiation with respect to zðz ¼ x1 þ ix2Þ. The quantities qx1 ; qx2 in Eq. (1) are the

components of heat flux in the x1 and x2 direction, respectively, k stands for the heat conductivity. Once the
heat conduction problem is solved, the temperature function g0ðzÞ is determined. For a two-dimensional
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Fig. 1. A pair of point heat source and sink in a trimaterial.
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theory of thermoelasticity, the components of the displacements and stresses can be expressed in terms of

two stress functions UðzÞ, XðzÞ and a temperature function g0ðzÞ as
2G
o

ox1
ðu1 þ iu2Þ ¼ jUðzÞ � XðzÞ � ðz� zÞU0ðzÞ þ 2Gbg0ðzÞ ð3Þ
r22 � ir12 ¼ UðzÞ þ XðzÞ þ ðz� zÞU0ðzÞ ð4Þ
where G is the shear modulus, j ¼ 3� 4m, b ¼ ð1þ mÞa for plane strain and ð3� mÞ=ð1þ mÞ, b ¼ a for plane

stress with m being the Poisson’s ratio and a the thermal expansion coefficient. Here a superimposed bar

represents the complex conjugate.

For the problem associated with an isotropic elastic bimaterial, the stresses are found to depend on only

two non-dimensional Dundurs parameters (Dundurs, 1969)
aab ¼
Gaðjb þ 1Þ � Gbðja þ 1Þ
Gaðjb þ 1Þ þ Gbðja þ 1Þ ; bab ¼

Gaðjb � 1Þ � Gbðja � 1Þ
Gaðjb þ 1Þ þ Gbðja þ 1Þ ð5Þ
where a and b refer to the two materials composing the bimaterial. Another pairs associated with the above

two parameters are defined as
Kab ¼
aab þ bab

1� bab
; Pab ¼

aab � bab

1þ bab
ð6Þ
which will be used in our subsequent derivations for trimaterial problems.
3. Temperature function

3.1. A singularity embedded in Sb

To obtain the thermal potential hðzÞ ¼ g0ðzÞ for the problem with a singularity in a trimaterial with two

parallel interfaces as shown in Fig. 1, the alternating technique is applied.
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Step 1: Analytical continuation across the interface L
First, we regard regions Sa and Sb composed of the same material b and region Sc of material c. If h0ðzÞ

signifies a potential for a singularity in an infinite homogeneous plane of material b, hc0ðzÞ analytical in Sc
and h1ðzÞ analytical in Sa [ Sb are introduced to satisfy the continuity conditions across L as
hðzÞ ¼ h0ðzÞ þ h1ðzÞ z 2 Sa [ Sb
hc0ðzÞ z 2 Sc

�
ð7Þ
The continuity of resultant heat flow and temperature across the interface L requires
hc0ðx1Þ þ hc0ðx1Þ ¼ h1ðx1Þ þ h1ðx1Þ þ h0ðx1Þ þ h0ðx1Þ
kc½hc0ðx1Þ � hc0ðx1Þ� ¼ kbf½h0ðx1Þ þ h1ðx1Þ� � ½h0ðx1Þ þ h1ðx1Þ�g

(
ð8Þ
By the standard analytic continuation arguments it follows that
hc0ðzÞ ¼ h1ðzÞ þ h0ðzÞ z 2 Sa [ Sb
hc0ðzÞ ¼ h1ðzÞ þ h0ðzÞ z 2 Sc

(
ð9Þ

kchc0ðzÞ ¼ kbh0ðzÞ � kbh1ðzÞ z 2 Sa [ Sb
kchc0ðzÞ ¼ kbh0ðzÞ � kbh1ðzÞ z 2 Sc

(
ð10Þ
With Eqs. (9) and (10) one obtains
h1ðzÞ ¼ Vcbh0ðzÞ z 2 Sa [ Sb
hc0ðzÞ ¼ Ucbh0ðzÞ z 2 Sc

(
ð11Þ
where
Ucb ¼ 2kbðkc þ kbÞ�1

Vcb ¼ ðkb � kcÞðkc þ kbÞ�1
ð12Þ
Since this result is based on the assumption that region Sa is made up of material b, it cannot satisfy the

continuity conditions at the interface L� which lies between material a and b.

Step 2: Analytical continuation across the interface L�

Nest, we assume regions Sb and Sc be made up of the same material b and region Sa of material a.
Additional terms hb1ðzÞ analytical in Sb [ Sc and ha1ðzÞ analytical in Sa are introduced to satisfy the con-

tinuity conditions across the interface L� that
h�a1ðx�1Þ þ h�a1ðx�1Þ ¼ h�1ðx�1Þ þ h�1ðx�1Þ þ h0ðx�1Þ þ h�0ðx�1Þ þ h�b1ðx�1Þ þ h�b1ðx�1Þ
ka½h�a1ðx�1Þ � h�a1ðx�1Þ� ¼ kbf½h�0ðx�1Þ þ h�1ðx�1Þ þ h�b1ðx�1Þ� � ½h�0ðx�1Þ þ h�1ðx�1Þ þ h�b1ðx�1Þ�g

(
ð13Þ
Here, ‘*’ denotes the field in x�1 x�2 system. By analytical continuation method one can obtain
h�a1ðz�Þ ¼ Uab½h�1ðz�Þ þ h�0ðz�Þ� z� 2 Sa

h�b1ðzÞ ¼ Vab h�1ðz�Þ þ h�0ðz�Þ
h i

z� 2 Sb [ Sc

(
ð14Þ
where Uab and Vab are defined as in Eq. (12).

With a coordinate translation z� ¼ z� ih (see Fig. 1), it is easy to show that the thermal potential hðzÞ in
the x1x2 coordinate system is related to the function h�ðz�Þ in the x�1x

�
2 coordinate system by
h�ðz�Þ ¼ hðzÞ; h�ðz�Þ ¼ hðz� 2ihÞ ð15Þ
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Substitution of Eq. (15) to Eq. (14) yields
ha1ðzÞ ¼ Uab½h1ðzÞ þ h0ðzÞ� z 2 Sa

hb1ðzÞ ¼ Vab h1ðz� 2ihÞ þ h0ðz� 2ihÞ
� �

z 2 Sb [ Sc

(
ð16Þ
Since this result is based on the assumption that region Sc is made up of material b, it cannot satisfy the
continuity conditions at the interface L.

Step 3: Analytical continuation across the interface L
We again assume regions Sa and Sb be made up of the same material b and region Sc of material c.

Additional terms h2ðzÞ analytical in Sa [ Sb and hc1ðzÞ analytical in Sc are introduced to satisfy the continuity
conditions across the interface L. By a similar way to the previous approach, one can find
h2ðzÞ ¼ Vcbhb1ðzÞ z 2 Sa [ Sb

hc1ðzÞ ¼ Ucbhb1ðzÞ z 2 Sc

(
ð17Þ
Obviously, this result cannot satisfy the continuity conditions at the interface L�.

Step 4: Repetitions of steps 2 and 3

The method of analytical continuation is repeatedly performed across the two interfaces to achieve the

additional terms hanðzÞ, hbnðzÞ, hcnðzÞ, hnþ1ðzÞ for n ¼ 2; 3; . . . Consequently, one can find the complete

solution of hðzÞ as
hðzÞ ¼

P1
n¼1 hanðzÞ z 2 Sa

h0ðzÞ þ
P1

n¼1 hnðzÞ þ
P1

n¼1 hbnðzÞ z 2 Sb

hc0ðzÞ þ
P1

n¼1 hcnðzÞ z 2 Sc

8><
>: ð18Þ
Since hanðzÞ, hbnðzÞ and hcnðzÞ can be expressed in term of h0ðzÞ, Eq. (18) becomes
hðzÞ ¼
Uabh0ðzÞ þ Uab

P1
n¼1 hnðzÞ z 2 Sa

h0ðzÞ þ
P1

n¼1 hnðzÞ þ Vabh0ðz� 2ihÞ þ Vab
P1

n¼1 hnðz� 2ihÞ z 2 Sb

Ucbh0ðzÞ þ UcbVabh0ðz� 2ihÞ þ UcbVab
P1

n¼1 hnðz� 2ihÞ z 2 Sc

8><
>: ð19Þ
where the recurrence formulae for hnðzÞ is
hnþ1ðzÞ ¼
Vcbh0ðzÞ n ¼ 0

VcbVab½hnðzþ 2ihÞ þ h0ðzþ 2ihÞ� n ¼ 1

VcbVabhnðzþ 2ihÞ n ¼ 2; 3; 4; . . .

8><
>: ð20Þ
For a point heat source of intensity Q0 located in the point z ¼ zs and a point heat sink of the same intensity

located in the point z ¼ zk in the infinite homogeneous plate, the solution is
h0ðzÞ ¼ � Q0

2pk
log

z� zs
z� zk

� �
ð21Þ
3.2. A singularity embedded in Sc

Using the same procedure as Section 3.1, the solution of the other case in which the singularity is located

in region Sc is
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hðzÞ ¼
Uab

P1
n¼1 hnðzÞ z 2 SaP1

n¼1 hnðzÞ þ Vab
P1

n¼1 hnðz� 2ihÞ z 2 Sb

h0ðzÞ þ Vbch0ðzÞ þ UcbVab
P1

n¼1 hnðz� 2ihÞ z 2 Sc

8><
>: ð22Þ
where the recurrence formulae for hnðzÞ is
hnþ1ðzÞ ¼
Ubch0ðzÞ n ¼ 0

VcbVabhnðzþ 2ihÞ n ¼ 1; 2; 3; . . .

(
ð23Þ
4. Stress function

4.1. A coordinate translation

Suppose that the region Sa : x2 P h and Sb 6 h occupied by material a and b, respectively, are perfectly
bonded along the interface x2 ¼ h. With a coordinate translation z� ¼ z� ih (see Fig. 1 with material

c ¼ material b), the potentials UðzÞ and XðzÞ in the x1x2 coordinate system are related to the potentials

U�ðz�Þ and X�ðz�Þ in the x�1 x�2 coordinate system by
UðzÞ ¼ U�ðz�Þ; XðzÞ ¼ X�ðz�Þ þ 2ihU0�ðz�Þ ð24Þ
With U�ðz�Þ ¼ Uðz� 2ihÞ, it is easy to show
X�ðz�Þ ¼ Xðz� 2ihÞ þ 2ihU0ðz� 2ihÞ ð25Þ
4.2. A singularity embedded in Sb

We first regard regions Sa and Sb composed of the same material b and region Sc of material c. If UbhðzÞ
and XbhðzÞ signify the stress functions for a singularity in an infinite homogeneous plane of material b,
UbaðzÞ and XbaðzÞ analytical in Sa [ Sb, UccðzÞ and XccðzÞ analytical in Sc are introduced to satisfy the

continuity conditions across L as
UðzÞ ¼ UbaðzÞ þ UbhðzÞ z 2 Sa [ Sb
UðzÞ ¼ UccðzÞ z 2 Sc

�
ð26aÞ

XðzÞ ¼ XbaðzÞ þ XbhðzÞ z 2 Sa [ Sb

XðzÞ ¼ XccðzÞ z 2 Sc

(
ð26bÞ
The continuity of traction and displacement across L yields
Uccðx1Þ þ Xccðx1Þ ¼ Ubaðx1Þ þ Ubhðx1Þ þ Xbaðx1Þ þ Xbhðx1Þ ð27aÞ

1

2Gc
jcUccðx1Þ
�

� Xccðx1Þ
�
þ bchccðx1Þ ¼

1

2Gb
jbUbaðx1Þ
�

þ jbUbhðx1Þ � Xbaðx1Þ � Xbhðx1Þ
�

þ bb½h0ðx1Þ þ hbaðx1Þ þ hbcðx1Þ� ð27bÞ
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By the standard analytical continuation arguments it follows that
UccðzÞ ¼ XbaðzÞ þ UbhðzÞ z 2 Sc

XbhðzÞ þ UbaðzÞ ¼ XccðzÞ z 2 Sa [ Sb

�XccðzÞ
2Gc

¼ jbUbaðzÞ � XbhðzÞ
2Gb

þ bbhbaðzÞ z 2 Sa [ Sb

ð28aÞ

jcUccðzÞ
2Gc

þ bchccðzÞ ¼
jbUbhðzÞ � XbaðzÞ

2Gb
þ bb½hbcðzÞ þ h0ðzÞ� z 2 Sc ð28bÞ
From Eqs. (28a) and (28b), one can find
UbaðzÞ ¼
�bbhbaðzÞ þ 1

2Gb
� 1

2Gc

� �
XbhðzÞ

jb
2Gb

þ 1
2Gc

z 2 Sa [ Sb

UccðzÞ ¼
bb½hbcðzÞ þ h0ðzÞ� � bchccðzÞ þ ð1þjbÞ

2Gb
UbhðzÞ

jc
2Gc

þ 1
2Gb

z 2 Sc

XbaðzÞ ¼
bb hbcðzÞ þ h0ðzÞ
� �

� bchccðzÞ þ jb
2Gb

� jc
2Gc

� �
UbhðzÞ

jc
2Gc

þ 1
2Gb

z 2 Sa [ Sb

ð29aÞ

XccðzÞ ¼
�bbhbaðzÞ þ ðjbþ1Þ

2Gb
XbhðzÞ

jb
2Gb

þ 1
2Gc

z 2 Sc ð29bÞ
where
UbhðzÞ ¼
GbQ0bb

4pkbð1� mbÞ
log

z� zs
z� zk

� �
ð30Þ

XbhðzÞ ¼
GbQ0bb

4pkbð1� mbÞ
log

z� zs
z� zk

� ��
þ z� zs
z� zs

� z� zk
z� zk

	
ð31Þ

hbaðzÞ ¼
X1
n¼1

hnðzÞ ð32Þ

hbcðzÞ ¼ Vabh0ðz� 2ihÞ þ Vab
X1
n¼1

hnðz� 2ihÞ ð33Þ

hccðzÞ ¼ Ucbh0ðzÞ þ UcbVabh0ðz� 2ihÞ þ UcbVab
X1
n¼1

hnðz� 2ihÞ ð34Þ
Since this result is based on the assumption that region Sa is made up of material b, it cannot satisfy the

continuity condition across L�.

Next, we assume regions Sb and Sc be made up of the same material b and region Sa of material a.
Additional terms U0ðzÞ and X0ðzÞ analytical in Sb [ Sc, UaaðzÞ and XaaðzÞ analytical in Sa are introduced to

satisfy the continuity conditions across L� as
U�
aaðx�1Þ þ X�

aaðx�1Þ ¼ U�
baðx�1Þ þ X�

baðx�1Þ þ U�
bhðx�1Þ þ X�

bhðx�1Þ þ U�
0ðx�1Þ þ X�

0ðx�1Þ ð35aÞ
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1

2Ga
jaU

�
aaðx�1Þ

h
� X�

aaðx�1Þ
i
þ bah

�
aaðx�1Þ ¼

1

2Gb
½jbU

�
baðx�1Þ þ jbU

�
bhðx�1Þ þ jbU

�
0ðx�1Þ � X�

baðx�1Þ

� X�
bhðx�1Þ � X�

0ðx�1Þ� þ bb½h�0ðx�1Þ þ h�baðx�1Þ þ h�bcðx�1Þ� ð35bÞ
where
haaðzÞ ¼ Uabh0ðzÞ þ Uab

X1
n¼1

hnðzÞ ð36Þ
By the standard analytical continuation arguments it follows that
U�
aaðz�Þ ¼ U�

baðz�Þ þ U�
bhðz�Þ þ X�

0ðz�Þ z� 2 Sa

X�
aaðz�Þ ¼ U�

0ðz�Þ þ X�
baðz�Þ þ X�

bhðz�Þ z� 2 Sb [ Sc
ð37aÞ

jaU
�
aaðz�Þ

2Ga
þ bah

�
aaðz�Þ ¼

jbU
�
baðz�Þ þ jbU

�
bhðz�Þ � X�

0ðz�Þ
2Gb

þ bb½h�0ðz�Þ þ h�baðz�Þ� z� 2 Sa

� X�
aaðz�Þ
2Ga

¼ jbU
�
0ðz�Þ � X�

baðz�Þ � X�
bhðz�Þ

2Gb
þ bbh

�
bcðz�Þ z� 2 Sb [ Sc

ð37bÞ
From Eqs. (37a) and (37b), one can find
U�
0ðz�Þ ¼

1
Gb
� 1

Ga

� �
½X�

baðz�Þ þ Xbh
�ðz�Þ� � 2bbh

�
bcðz�Þ

1
Ga
þ jb

Gb

z� 2 Sb [ Sc

U�
aaðz�Þ ¼

jbþ1

Gb
½U�

baðz�Þ þ U�
bhðz�Þ� þ 2bb½h�0ðz�Þ þ h�baðz�Þ� � 2bah

�
aaðz�Þ

ja
Ga
þ 1

Gb

z� 2 Sa

ð38aÞ

X�
0ðz�Þ ¼

jb
Gb
� ja

Ga

� �
½U�

baðz�Þ þ U�
bhðz�Þ� þ 2bb½h�0ðz�Þ þ h�baðz�Þ� � 2bah

�
aaðz�Þ

ja
Ga
þ 1

Gb

z� 2 Sb [ Sc

X�
aaðz�Þ ¼

1þjb
Gb

� �
½X�

baðz�Þ þ X�
bhðz�Þ� � 2bbh

�
bcðz�Þ

1
Ga
þ jb

Gb

z� 2 Sa

ð38bÞ
With the aid of Eqs. (15), (24) and (25), Eqs. (38a) and (38b) become
U0ðzÞ ¼
1
Gb
� 1

Ga

� �
½Xbaðz� 2ihÞ þ 2ihU0

baðz� 2ihÞ� � 2bbhbcðzÞ
1
Ga
þ jb

Gb

þ
1
Gb
� 1

Ga

� �
½Xbhðz� 2ihÞ þ 2ihU0

bhðz� 2ihÞ�
1
Ga
þ jb

Gb

z 2 Sb [ Sc

UaaðzÞ ¼
ðjbþ1Þ
Gb

½UbaðzÞ þ UbhðzÞ� þ 2bb½h0ðzÞ þ hbaðzÞ� � 2bahaaðzÞ
ja
Ga
þ 1

Gb

z 2 Sa

ð39aÞ
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X0ðzÞ ¼ 2ihU0
0ðzÞ þ

jb
Gb
� ja

Ga

� �
½Ubaðz� 2ihÞ þ Ubhðz� 2ihÞ� þ 2bb½h0ðz� 2ihÞ þ hbaðz� 2ihÞ� � 2bahaaðz� 2ihÞ

ja
Ga
þ 1

Gb

z 2 Sb [ Sc

XaaðzÞ ¼ 2ihU0
aaðzÞ þ

jbþ1

Gb
½XbaðzÞ � 2ihU0

baðzÞ þ XbhðzÞ � 2ihU0
bhðzÞ� � 2bbhbcðz� 2ihÞ

1
Ga
þ jb

Gb

z 2 Sa
ð39bÞ

Since this result is based on the assumption that region Sc is made up of material b, it cannot satisfy the

continuity conditions across L. The procedures are similar to the previous approach and therefore the

details are suppressed here. The final results are as follows
UðzÞ ¼
UaaðzÞ þ ð1þ KabÞ

P1
n¼1 UnðzÞ z 2 Sa

UbaðzÞ þ UbhðzÞ þ U0ðzÞ þ
P1

n¼1½UnðzÞ þ K�1
cb Xnþ1ðzÞ� z 2 Sb

UccðzÞ þ ð1þ KcbÞU0ðzÞ þ ð1þ K�1
cb Þ

P1
n¼1 Xnþ1ðzÞ z 2 Sc

8><
>: ð40aÞ

XðzÞ ¼
XaaðzÞ þ ð1þPabÞ

P1
n¼1 XnðzÞ þ 2ihðKab �PabÞ

P1
n¼1 U

0
nðzÞ z 2 Sa

XbaðzÞ þ XbhðzÞ þ X0ðzÞ þ
P1

n¼1½XnðzÞ þP�1
cb Unþ1ðzÞ� z 2 Sb

XccðzÞ þ ð1þPcbÞX0ðzÞ þ ð1þP�1
cb Þ

P1
n¼1 Unþ1ðzÞ z 2 Sc

8><
>: ð40bÞ
where the recurrence formulae for UnðzÞ and XnðzÞ are
Unþ1ðzÞ ¼
PcbX0ðzÞ for n ¼ 0

Pcb½KabUnðzþ 2ihÞ � 2ihPabX
0
nðzþ 2ihÞ � 4h2PabU

00
nðzþ 2ihÞ� for n ¼ 1; 2; 3; . . .

(
ð41aÞ

Xnþ1ðzÞ ¼
KcbU0ðzÞ for n ¼ 0

PabKcb½Xnðzþ 2ihÞ � 2ihU0
nðzþ 2ihÞ� for n ¼ 1; 2; 3; . . .

(
ð41bÞ
For the special case that material a is made up of material b, Eq. (40) reduces to
UðzÞ ¼

�bbVcbh0ðzÞ þ 1
2Gb

� 1
2Gc

� �
XbhðzÞ

jb
2Gb

þ 1
2Gc

þ UbhðzÞ z 2 Sb

ðbb � bcUcbÞh0ðzÞ þ ð1þjbÞ
2Gb

UbhðzÞ
jc
2Gc

þ 1
2Gb

z 2 Sc

8>>>>><
>>>>>:

ð42aÞ

XðzÞ ¼

ðbb � bcUcbÞh0ðzÞ þ jb
2Gb

� jc
2Gc

� �
UbhðzÞ

jc
2Gc

þ 1
2Gb

þ XbhðzÞ z 2 Sb

�bbVcbh0ðzÞ þ ðjbþ1Þ
2Gb

XbhðzÞ
jb
2Gb

þ 1
2Gc

z 2 Sc

8>>>>><
>>>>>:

ð42bÞ
which is in agreement with the exact solution of the bimaterial one (Chao and Shen, 1993).

4.3. A singularity embedded in Sc

By the same arguments as Section 4.2, the solution of the other case in which the singularity is located in

region Sc is
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UðzÞ ¼
UaaðzÞ þ ð1þ KabÞ

P1
n¼1 UnðzÞ z 2 Sa

UbaðzÞ þ U0ðzÞ þ
P1

n¼1½UnðzÞ þ K�1
cb Xnþ1ðzÞ� z 2 Sb

UccðzÞ þ UchðzÞ þ ð1þ KcbÞU0ðzÞ þ ð1þ K�1
cb Þ

P1
n¼1 Xnþ1ðzÞ z 2 Sc

8><
>: ð43aÞ

XðzÞ ¼
XaaðzÞ þ ð1þPabÞ

P1
n¼1 XnðzÞ þ 2ihðKab �PabÞ

P1
n¼1 U

0
nðzÞ z 2 Sa

XbaðzÞ þ X0ðzÞ þ
P1

n¼1½XnðzÞ þP�1
cb Unþ1ðzÞ� z 2 Sb

XccðzÞ þ XchðzÞ þ ð1þPcbÞX0ðzÞ þ ð1þP�1
cb Þ

P1
n¼1 Unþ1ðzÞ z 2 Sc

8><
>: ð43bÞ
where the recurrence formulae for UnðzÞ and XnðzÞ are
Unþ1ðzÞ ¼
PcbX0ðzÞ for n ¼ 0

Pcb½KabUnðzþ 2ihÞ � 2ihPabX
0
nðzþ 2ihÞ � 4h2PabU

00
nðzþ 2ihÞ� for n ¼ 1; 2; 3; . . .

(
ð44aÞ

Xnþ1ðzÞ ¼
KcbU0ðzÞ for n ¼ 0

PabKcb½Xnðzþ 2ihÞ � 2ihU0
nðzþ 2ihÞ� for n ¼ 1; 2; 3; . . .

(
ð44bÞ
and
UbaðzÞ ¼
1þjc
2Gc

� �
UchðzÞ � bbhbaðzÞ þ bch0ðzÞ

jb
2Gb

þ 1
2Gc

UccðzÞ ¼
1

2Gc
� 1

2Gb

� �
XchðzÞ þ bbhbcðzÞ � bchccðzÞ

jc
2Gc

þ 1
2Gb

ð45aÞ

XbaðzÞ ¼
1þjc
2Gc

� �
XchðzÞ þ bbhbcðzÞ � bchccðzÞ

jc
2Gc

þ 1
2Gb

XccðzÞ ¼
jc
2Gc

� jb
2Gb

h i
UchðzÞ � bbhbaðzÞ þ bch0ðzÞ

jb
2Gb

þ 1
2Gc

ð45bÞ

U0ðzÞ ¼
1
Gb
� 1

Ga

� �
Xbaðz� 2ihÞ þ 2ihU0

baðz� 2ihÞ
h i

� 2bbhbcðzÞ
1
Ga
þ jb

Gb

UaaðzÞ ¼
jbþ1
Gb

UbaðzÞ þ 2bbhbaðzÞ � 2bahaaðzÞ
ja
Ga
þ 1

Gb

ð46aÞ

X0ðzÞ ¼ 2ihU0
0ðzÞ þ

jb
Gb
� ja

Ga

� �
Ubaðz� 2ihÞ þ 2bbhbaðz� 2ihÞ � 2bahaaðz� 2ihÞ

ja
Ga
þ 1

Gb

XaaðzÞ ¼ 2ihU0
aaðzÞ þ

jbþ1
Gb

½XbaðzÞ � 2ihU0
baðzÞ� � 2bbhbcðz� 2ihÞ
1
Ga
þ jb

Gb

ð46bÞ

UchðzÞ ¼
GcQ0bc

4pkcð1� mcÞ
log

z� zs
z� zk

� �
ð47Þ
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XchðzÞ ¼
GcQ0bc

4pkcð1� mcÞ
log

z� zs
z� zk

� ��
þ z� zs
z� zs

� z� zk
z� zk

	
ð48Þ

hbaðzÞ ¼
X1
n¼1

hnðzÞ ð49Þ

hbcðzÞ ¼ Vab
X1
n¼1

hnðz� 2ihÞ ð50Þ

hccðzÞ ¼ Vbch0ðzÞ þ UcbVab
X1
n¼1

hnðz� 2ihÞ ð51Þ

haaðzÞ ¼ Uab

X1
n¼1

hnðzÞ ð52Þ
For the special case that material a is made up of material b, Eq. (43) reduces to
UðzÞ ¼

1þjc
2Gc

UchðzÞ þ ðbc � UbcbbÞh0ðzÞ
jb
2Gb

þ 1
2Gc

z 2 Sb

1
2Gc

� 1
2Gb

� �
XchðzÞ � bcVbch0ðzÞ
jc
2Gc

þ 1
2Gb

þ Uch z 2 Sc

8>>>><
>>>>:

ð53aÞ

XðzÞ ¼

1þjc
2Gc

XchðzÞ � bcVbch0ðzÞ
jc
2Gc

þ 1
2Gb

z 2 Sb

jc
2Gc

� jb
2Gb

� �
UchðzÞ þ ðbc � UbcbbÞh0ðzÞ

jb
2Gb

þ 1
2Gc

þ XchðzÞ z 2 Sc

8>>>><
>>>>:

ð53bÞ
which is in accordance with the exact solution of the bimaterial one (Chao and Shen, 1993).
5. Results and discussion

The thermal potentials as indicated in Eqs. (19) and (22) are expressed in terms of a homogeneous

solution h0ðzÞ through the recurrence formulae (20) and (23), respectively. The rate of the convergence

depends on the non-dimensional bimaterial constants Uab and Vab (or Ubc and Vbc). The present series
solution converges to the true solution since those bimaterial constants are always less than one. The stress

functions as indicated in Eqs. (40) and (43) are expressed in terms of UnðzÞ and XnðzÞ ðn ¼ 0; 1; 2; . . .Þ, which
may be calculated from a homogeneous solution U0ðzÞ and X0ðzÞ by the recurrence formulae equations (41)

and (44). The rate of convergence depends on the ratios jUnþ1ðzÞj=jUnðzÞj and jXnþ1ðzÞj=jXnðzÞj, which in

turn depend on the non-dimensional bimaterial constants Kab and Pab (or Kcb and Pcb). For most com-

binations of materials, K and P are less than 1 and 0.5, respectively, which guarantees rapid convergence.

Consequently, the convergence rate becomes more rapid as the differences of the elastic constants of the

neighboring materials get smaller. Even though materials a and/or c are rigid or non-existent, the solution
remains valid. For another limiting case in which two adjacent materials are identical, the series solution for

a trimaterial reduces to the bimaterial one. In order to demonstrate the use of the present approach, the



6244 C.K. Chao, F.M. Chen / International Journal of Solids and Structures 41 (2004) 6233–6247
interfacial stresses for a trimaterial and for a film/substrate system are discussed in detail and shown in

graphic form. Note that all the calculated results shown in Figs. 2–7 are determined by summing up the first

four terms of Eq. (40), since they are checked to achieve a good accuracy with an error less than 0.01% as

compared to the first five terms of Eq. (40) for the current problem.
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Fig. 3. Interfacial normal stress distribution induced by a point heat source.
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Fig. 2. Interfacial shear stress distribution induced by a point heat source.
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Fig. 4. Interfacial shear stress distribution induced by a pair of point heat source and sink.
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5.1. Interfacial stresses for a trimaterial

As our first example, we consider a trimaterial interacted with a point heat source embedded in material
b. The shear stress and normal stress distributions along the interface between material a and material b are

presented in Figs. 2 and 3, respectively. Both the maximum shear stress and the maximum compressive

normal stress decrease with increasing of the distance between the singularity point and the interface. Note
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Fig. 6. Interfacial shear stress distribution for a film/substrate structure.
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Fig. 7. Interfacial normal stress distribution for a film/substrate structure.
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that the normal interfacial stress would not be bounded as jx1j goes to infinity due to the presence of the
singular term ln z induced by a point heat source. Nevertheless, the interfacial stress remains finite at infinity

if one considers the case with a pair of point heat source and sink applied in the material medium as

indicated in Figs 4 and 5. Moreover, it is evident that the maximum compressive (or tensile) stress occurs

around the location of the heat source (or sink).
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5.2. Interfacial stresses for a film/substrate

As a second example we consider a film/substrate structure interacted with a pair of point heat source

and sink. When material c (or a) is non-existent, the solution of a film/substrate structure can be obtained
by putting Ucb ¼ 2, Vcb ¼ 1 in Eq. (19) and Kcb ¼ Pcb ¼ �1 in Eqs. (40). The distribution of the interfacial

stresses between material a and material b is shown in Figs. 6 and 7. It is seen that the trend of the

interfacial stresses of the present case is nearly the same as that of the trimaterial one, but the magnitude of

interfacial stresses for a film/substrate structure is smaller than that of a trimaterial. This is simply because

that the interfacial stresses can be further intensified (or diminished) by the adjacent material having a

higher (or lower) stiffness.
6. Conclusion

Thermal stresses for an isotropic trimaterial induced by a point heat source is analyzed in this paper.

Within the framework of the procedure of analytical continuation and the method of successive approx-

imations, the solution associated with the heterogeneous problem is sought as transformation on the

solution to the corresponding homogeneous problem. Using the present approach, the solution related to

the problem consisting of any number of layered medium can also be obtained as the corresponding

homogeneous solution is solved. The convergence rate of the series solution depends on the material

combinations in such a way that the convergence rate becomes more rapid if the differences of elastic
constants of adjacent materials get smaller. The trimaterial solution presented here can be applied to a

variety of problems, e.g. a bimaterial, a film/substrate structure, and a finite strip of thin film, etc.
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